Homework0: weakly-compressible SPH

sph_taichi

尝试写了一个简单基于weakly-compressible SPH 的流体求解器 :joy:

(taichi算起来真快啊

import numpy as np
import matplotlib.pyplot as plt
import time
from itertools import count
import taichi as ti

ti.init(arch=ti.cpu)

df_fac = 1.3
dx = 0.2
dh = dx * df_fac

###### Scene parameters ########
w = 20
h = 10
w_bound = 22
h_bound = 12

bottom_bound = 0.0
top_bound = 0.0
left_bound = 0.0
right_bound = 0.0

assert w_bound > w
assert h_bound > h
x_min = (w_bound - w) / 2.0
y_min = (h_bound - h) / 2.0
x_max = w_bound - (w_bound - w) / 2.0
y_max = h_bound - (h_bound - h) / 2.0

def computeGridIndex(x, y):
    idx = np.floor(x / (2*dh)).astype(int)
    idy = np.floor(y / (2*dh)).astype(int)
    return idx, idy

def placeParticles(position_list, paticle_list, wall_mark, bound=0):
    """position_list: [start_x, start_y, end_x, end_y] """
    start_x, start_y, end_x, end_y = position_list
    vel_x, vel_y, p, rho = 0.0, 0.0, 0.0, 1000.0
    for pos_x in np.arange(start_x, end_x, dx):
        for pos_y in np.arange(start_y, end_y, dx):
            paticle_list.append([pos_x, pos_y])
            if bound:
                wall_mark.append(0)
            else:
                wall_mark.append(1)

def setup():
    particle_list = []
    wall_mark = []
    # Dam break
    start_x = x_min + 0.5 * dx
    start_y = y_min - 1.0 * dx
    end_x = start_x + 0.5 * h
    end_y = start_y + 0.5 * h

## Constrcut wall
# Bottom square
b_start_x = 0.0
b_start_y = 0.0
b_end_x = b_start_x + w
b_end_y = b_start_y + y_min - 2 * dx

bottom_bound = b_end_y

# Top square
t_start_x = 0.0
t_start_y = h - y_min + 2 * dx
t_end_x = t_start_x + w
t_end_y = h

top_bound = t_start_y

# left square
l_start_x = 0.0
l_start_y = y_min - 2 * dx
l_end_x = l_start_x + x_min - 2 * dx
l_end_y = l_start_y + h - 2 * y_min + 4 * dx

left_bound = l_end_x

# right square
r_start_x = w - x_min + 2 * dx
r_start_y = y_min - 2 * dx
r_end_x = w - dx
r_end_y = r_start_y + h - 2 * y_min + 4 * dx

right_bound = r_start_x

pos_list_fluid = [start_x, start_y, end_x, end_y]
placeParticles(pos_list_fluid, particle_list, wall_mark)

# These are boundaries
pos_list_bs = [b_start_x, b_start_y, b_end_x, b_end_y]
placeParticles(pos_list_bs, particle_list, wall_mark, bound=1)

pos_list_ts = [t_start_x, t_start_y, t_end_x, t_end_y]
placeParticles(pos_list_ts, particle_list, wall_mark, bound=1)

pos_list_ls = [l_start_x, l_start_y, l_end_x, l_end_y]
placeParticles(pos_list_ls, particle_list, wall_mark, bound=1)

pos_list_rs = [r_start_x, r_start_y, r_end_x, r_end_y]
placeParticles(pos_list_rs, particle_list, wall_mark, bound=1)

return particle_list,wall_mark, top_bound, bottom_bound, left_bound, right_bound

def makeGrid():
grid_size = 2*dh
num_x = np.ceil(w_bound / grid_size).astype(int)
num_y = np.ceil(h_bound / grid_size).astype(int)

grid_x = num_x
grid_y = num_y
return grid_x, grid_y

@ti.data_oriented
class sph_solver:
def __init__(self, particle_list,
             wall_mark,
             grid,
             bound, dx=0.2, max_time=10000, max_steps=1000,gui=None):
    ######## Solver parameters ##########
    self.max_time = max_time
    self.max_steps = max_steps
    self.gui = gui
    # Gravity
    self.g = -9.80
    # viscosity
    self.mu = 1e-3
    # reference density
    self.rho_0 = 1000.0
    # CFL coefficient
    self.CFL = 0.20

    # Smooth kernel norm factor
    self.kernel_norm = 1.0

    # Pressure state function parameters
    self.gamma = 7.0
    self.c_0 = 20.0

    ###### Scene parameters ########
    self.w = 20
    self.h = 10
    self.w_bound = 22
    self.h_bound = 12

    assert self.w_bound > self.w
    assert self.h_bound > self.h
    self.x_min = (self.w_bound - self.w) / 2.0
    self.y_min = (self.h_bound - self.h) / 2.0
    self.x_max = self.w_bound - (self.w_bound - self.w) / 2.0
    self.y_max = self.h_bound - (self.h_bound - self.h) / 2.0

    self.top_bound = bound[0] # top_bound
    self.bottom_bound = bound[1] #bottom_bound
    self.left_bound = bound[2] #left_bound
    self.right_bound = bound[3] #right_bound

    self.df_fac = 1.3
    self.dx = 0.2
    self.dh = self.dx * self.df_fac
    self.kernel_norm = 10. / (7. * np.pi * self.dh ** 2)

    ###### Particles #######
    self.dim = 2
    self.particle_numbers = len(particle_list)

    self.grid_x = grid[0]
    self.grid_y = grid[1]

    # Fluid particles
    self.old_positions = ti.Vector(self.dim, dt=ti.f32)
    self.particle_positions = ti.Vector(self.dim, dt=ti.f32)
    self.particle_velocity = ti.Vector(self.dim, dt=ti.f32)
    self.particle_pressure = ti.Vector(1, dt=ti.f32)
    self.particle_density = ti.Vector(1, dt=ti.f32)
    self.wall_mark_list = ti.Vector(1, dt=ti.f32)

    self.d_velocity = ti.Vector(self.dim, dt=ti.f32)
    self.d_density = ti.Vector(1, dt=ti.f32)

    self.dx = dx
    self.m = self.dx**2 * 1000

    self.particle_list = np.array(particle_list)
    self.wall_mark = np.array(wall_mark)

    self.grid_num_particles = ti.var(ti.i32)
    self.grid2particles = ti.var(ti.i32)
    self.particle_num_neighbors = ti.var(ti.i32)
    self.particle_neighbors = ti.var(ti.i32)

    self.max_num_particles_per_cell = 100
    self.max_num_neighbors = 100

    ti.root.dense(ti.i, self.particle_numbers).place(self.old_positions, self.particle_positions,
                                                     self.particle_velocity, self.particle_pressure,
                                                     self.particle_density, self.d_velocity, self.d_density,
                                                     self.wall_mark_list)

    grid_snode = ti.root.dense(ti.ij, (self.grid_x, self.grid_y))
    grid_snode.place(self.grid_num_particles)
    grid_snode.dense(ti.k, self.max_num_particles_per_cell).place(self.grid2particles)

    nb_node = ti.root.dense(ti.i, self.particle_numbers)
    nb_node.place(self.particle_num_neighbors)
    nb_node.dense(ti.j, self.max_num_neighbors).place(self.particle_neighbors)

@ti.kernel
def init(self, p_list:ti.ext_arr(), w_list:ti.ext_arr()):
    for i in range(self.particle_numbers):
        for j in ti.static(range(self.dim)):
            self.particle_positions[i][j] = p_list[i,j]
            self.particle_velocity[i][j] = ti.cast(0.0, ti.f32)
        self.d_velocity[i][0] = ti.cast(0.0, ti.f32)
        self.d_velocity[i][1] = ti.cast(-9.8, ti.f32)

        self.wall_mark_list[i][0] = w_list[i]

        self.d_density[i][0] = ti.cast(0.0, ti.f32)
        self.particle_pressure[i][0] = ti.cast(0.0, ti.f32)
        self.particle_density[i][0] = ti.cast(1000.0, ti.f32)

@ti.func
def computeGridIndex(self, pos):
    return (pos / (2 * dh)).cast(int)

@ti.kernel
def allocateParticles(self):
    # allocate particles to grid
    for p_i in self.particle_positions:
        # Compute the grid index on the fly
        cell = self.computeGridIndex(self.particle_positions[p_i])
        # Use vector as index?
        offs = self.grid_num_particles[cell].atomic_add(1)
        self.grid2particles[cell, offs] = p_i

@ti.func
def is_in_grid(self, c):
    return 0 <= c[0] and c[0] < self.grid_x and 0 <= c[1] and c[1] < self.grid_y

@ti.func
def isFluid(self, p):
    return self.wall_mark_list[p][0]

@ti.kernel
def search_neighbors(self):
    for p_i in self.particle_positions:
        pos_i = self.particle_positions[p_i]
        nb_i = 0
        if self.isFluid(p_i) == 1:
            # Compute the grid index on the fly
            cell = self.computeGridIndex(self.particle_positions[p_i])
            for offs in ti.static(ti.grouped(ti.ndrange((-1, 2), (-1, 2)))):
                cell_to_check = cell + offs
                if self.is_in_grid(cell_to_check):
                    for j in range(self.grid_num_particles[cell_to_check]):
                        p_j = self.grid2particles[cell_to_check, j]
                        if nb_i < self.max_num_neighbors and p_j != p_i and (
                                pos_i - self.particle_positions[p_j]).norm() < self.dh * 1.30:
                            self.particle_neighbors[p_i, nb_i] = p_j
                            nb_i += 1
        self.particle_num_neighbors[p_i] = nb_i

@ti.func
def cubicKernel(self, r, h):
    """ Return value of cubic spline smoothing kernel"""
    k = 10. / (7. * np.pi * h ** 2)
    q = r / h
    assert q >= 0.0
    res = ti.cast(0.0, ti.f32)

    if q <= 1.0:
        res = k * (1 - 1.5 * q ** 2 + 0.75 * q ** 3)
    elif q < 2.0:
        res = k * 0.25 * (2 - q) ** 3
    return res

@ti.func
def cubicKernelDerivative(self, r, h):
    """ Return derivative of cubcic spline smoothing kernel"""

    k = 10. / (7. * np.pi * h ** 2)
    q = r / h
    assert q > 0.0
    res = ti.cast(0.0, ti.f32)
    if q < 1.0:
        res =  (k / h) * (-3 * q + 2.25 * q ** 2)
    elif q < 2.0:
        res = -0.75 * (k / h) * (2 - q) ** 2
    return res

@ti.func
def rhoDerivative(self, ptc_i, ptc_j, r, r_mod, h):
    """Weakly compressible """
    return self.m * self.cubicKernelDerivative(r_mod, h) \
           * (self.particle_velocity[ptc_i]- self.particle_velocity[ptc_j]).dot(r / r_mod)

@ti.func
def pUpdate(self, rho, rho_0=1000, gamma=7.0, c_0=20.0):
    """Weakly compressible, tait function """
    b = rho_0 * c_0 ** 2 / gamma
    return b * ((rho / rho_0) ** gamma - 1.0)

@ti.func
def pressureForce(self, ptc_i, ptc_j, r, r_mod, h, mirror_pressure=0):
    """Compute the pressure force contribution, Symmetric Formula"""
    res = ti.Vector([0.0, 0.0])
    # Use pressure mirror method to handle boundary leak
    if mirror_pressure == 1:
        res = - self.m * (self.particle_pressure[ptc_i][0]/ self.particle_density[ptc_i][0] ** 2
                          + self.particle_pressure[ptc_i][0]/self.rho_0**2)* self.cubicKernelDerivative(r_mod, h) * r / r_mod
    else:
        res =  -self.m * (self.particle_pressure[ptc_i][0] / self.particle_density[ptc_i][0] ** 2
                          + self.particle_pressure[ptc_j][0] / self.particle_density[ptc_j][0] ** 2) \
               * self.cubicKernelDerivative(r_mod, h) * r / r_mod
    return res

@ti.func
def viscosityForce(self, ptc_i, ptc_j, r, r_mod, h, mu=1e-3):
    """Compute the viscosity force contribution, Symmetric Formula"""
    res = ti.Vector([0.0, 0.0])
    res =  mu * (1.0 / self.particle_density[ptc_i][0] ** 2 + 1.0 / self.particle_density[ptc_j][0] ** 2) \
           * self.cubicKernelDerivative(r_mod, h) * (self.particle_velocity[ptc_i]- self.particle_velocity[ptc_j]) / r_mod
    return res

@ti.kernel
def computeDeltas(self):
    for p_i in self.particle_positions:
        pos_i = self.particle_positions[p_i]
        d_v = ti.Vector([0.0, 0.0])
        d_rho = 0.0
        if self.isFluid(p_i) == 1:
            d_v = ti.Vector([0.0, -9.8])
            for j in range(self.particle_num_neighbors[p_i]):
                p_j = self.particle_neighbors[p_i, j]
                pos_j = self.particle_positions[p_j]

                mirror_pressure = 0
                if self.isFluid(p_j) == 0:
                    mirror_pressure = 1
                # Compute distance and its mod
                r = pos_i - pos_j
                r_mod = r.norm()

                # Compute Density change
                d_rho += self.rhoDerivative(p_i, p_j, r, r_mod, self.dh)

                # Compute Viscosity force contribution
                d_v += self.viscosityForce(p_i, p_j, r, r_mod, self.dh, self.mu)

                # Compute Pressure force contribution
                d_v += self.pressureForce(p_i, p_j, r, r_mod, self.dh, mirror_pressure)

        self.d_velocity[p_i] = d_v
        self.d_density[p_i][0] = d_rho

@ti.kernel
def updateTimeStep(self):
    for p_i in self.particle_positions:
        #pos_i = self.particle_positions[p_i]
        if self.isFluid(p_i) == 1:
            self.particle_positions[p_i] += self.dt * self.particle_velocity[p_i]
            self.particle_velocity[p_i] += self.dt * self.d_velocity[p_i]
            self.particle_density[p_i][0] += self.dt * self.d_density[p_i][0]
            self.particle_pressure[p_i][0] = self.pUpdate(self.particle_density[p_i][0], self.rho_0, self.gamma, self.c_0)

def solve(self):
    # Compute dt, a naive initial test value
    self.dt = 0.1 * self.dh / self.c_0
    print("Time step: ", self.dt)
    print("Domain: (%s, %s, %s, %s)" % (self.x_min, self.x_max, self.y_min, self.y_max), )
    print("Fluid area: (%s, %s, %s, %s)"%(self.left_bound, self.right_bound, self.bottom_bound, self.top_bound))
    print("Grid: (%d, %d)"%(self.grid_x, self.grid_y))

    step = 1
    t = 0.0
    total_start = time.process_time()
    while t < self.max_time and step < self.max_steps:
        curr_start = time.process_time()
        self.solveUpdate()
        max_v = np.max(np.linalg.norm(self.particle_velocity.to_numpy(),2, axis=1))
        max_a = np.max(np.linalg.norm(self.d_velocity.to_numpy(),2, axis=1))
        max_rho = np.max(self.particle_density.to_numpy())
        max_pressure = np.max(self.particle_pressure.to_numpy())

        curr_end = time.process_time()
        t += self.dt
        step += 1

        # CFL analysis
        dt_cfl = self.dh / max_v
        dt_f = np.sqrt(self.dh / max_a)
        dt_a = self.dh / (self.c_0 * np.sqrt((max_rho / self.rho_0)**self.gamma))
        self.dt = self.CFL * np.min([dt_cfl, dt_f, dt_a])
        if step % 10 == 0:
            print("Step: %d, physics time: %s, progress: %s %%, time used: %s, total time used: %s"
                  % (step, t, 100*np.max([t / self.max_time, step / self.max_steps]), curr_end-curr_start, curr_end-total_start))
            print("Max velocity: %s, Max acceleration: %s, Max density: %s, Max pressure: %s" % (max_v, max_a, max_rho, max_pressure))
            print("Adaptive time step: ", self.dt)
        self.render(step, self.gui)
    total_end = time.process_time()
    print("Total time used: %s " % (total_end - total_start))

def solveUpdate(self):
    self.grid_num_particles.fill(0)
    self.particle_neighbors.fill(-1)
    self.allocateParticles()
    self.search_neighbors()
    # Compute delta
    self.computeDeltas()
    # Update
    self.updateTimeStep()

def isFluidNP(self, p):
    return self.wall_mark[p]

def render(self, step, gui):
    canvas = gui.canvas
    canvas.clear(bg_color)
    pos_np = self.particle_positions.to_numpy()
    fluid_p = []
    wall_p = []
    for i, pos in enumerate(pos_np):
        if self.isFluidNP(i) == 1:
            fluid_p.append(pos)
        else:
            wall_p.append(pos)
    fluid_p = np.array(fluid_p)
    wall_p = np.array(wall_p)

    for pos in fluid_p:
        for j in range(self.dim):
            pos[j] *= screen_to_world_ratio / screen_res[j]

    for pos in wall_p:
        for j in range(self.dim):
            pos[j] *= screen_to_world_ratio / screen_res[j]

    gui.circles(fluid_p, radius=particle_radius, color=particle_color)
    gui.circles(wall_p, radius=particle_radius, color=boundary_color)
    gui.show()

def main():
    gui = ti.GUI('SPH2D', screen_res)
    grid_shape = makeGrid()
    particle_list,wall_mark, u, b, l, r = setup()
    sph = sph_solver(particle_list, wall_mark, grid_shape, [u,b,l,r], dx = dx, gui=gui, max_steps=10000)
    sph.init(sph.particle_list, sph.wall_mark)
    sph.solve()
    print('done')

   screen_res = (800, 400)
   screen_to_world_ratio = 35.0
   bg_color = 0x112f41
   particle_color = 0x068587
   boundary_color = 0xebaca2
   particle_radius = 3.0
   particle_radius_in_world = particle_radius / screen_to_world_ratio
   main()
4 个赞

赞!正好明天要讲…一开始的particle和solver文件是不是忘了上传了?

啊 那两个是本地调试时用的 后来合成一个文件忘记删除了 :rofl: 期待明天的课程!

1 个赞

nice job!不过,我这边跑你的程序粒子后来飞出去了:>
不过这也是sph/mps的通病了,需要加很多修正来防止泄漏。

1 个赞

boundary handle 确实不完善! 暂时只用了mirror pressure,效果还不是很好

更新:今天课后参考了下面文章中处理boundary的方法,现在粒子应该不会穿界了。 :thinking:
M. Becker and M. Teschner (2007). “Weakly compressible SPH for free surface flows”. In:
Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation.
Eurographics Association, pp. 209–217.

github链接:GitHub - erizmr/SPH_Taichi: A high-performance implementation of SPH in Taichi.

sph_taichi_new

import numpy as np
import matplotlib.pyplot as plt
import time
from itertools import count
import taichi as ti

ti.init(arch=ti.cpu)

df_fac = 1.3
dx = 0.2
dh = dx * df_fac

###### Scene parameters ########
w = 20
h = 10
w_bound = 22
h_bound = 12

bottom_bound = 0.0
top_bound = 0.0
left_bound = 0.0
right_bound = 0.0

assert w_bound > w
assert h_bound > h
x_min = (w_bound - w) / 2.0
y_min = (h_bound - h) / 2.0
x_max = w_bound - (w_bound - w) / 2.0
y_max = h_bound - (h_bound - h) / 2.0

screen_res = (800, 400)
screen_to_world_ratio = 35.0
bg_color = 0x112f41
particle_color = 0x068587
boundary_color = 0xebaca2
particle_radius = 3.0
particle_radius_in_world = particle_radius / screen_to_world_ratio


def setup():
    def computeGridIndex(x, y):
        idx = np.floor(x / (2 * dh)).astype(int)
        idy = np.floor(y / (2 * dh)).astype(int)
        return idx, idy

    def placeParticles(position_list, paticle_list, wall_mark, bound=0):
        # position_list: [start_x, start_y, end_x, end_y]
        start_x, start_y, end_x, end_y = position_list
        vel_x, vel_y, p, rho = 0.0, 0.0, 0.0, 1000.0
        for pos_x in np.arange(start_x, end_x, dx):
            for pos_y in np.arange(start_y, end_y, dx):
                paticle_list.append([pos_x, pos_y])
                if bound:
                    wall_mark.append(0)
                else:
                    wall_mark.append(1)
    particle_list = []
    wall_mark = []

    #### Dam break #######
    start_x = x_min + 0.5 * dx
    start_y = y_min - 1.0 * dx
    end_x = start_x + 0.5 * h
    end_y = start_y + 0.6 * h

    ## Constrcut wall
    # Bottom square
    b_start_x = 0.0
    b_start_y = 0.0
    b_end_x = b_start_x + w
    b_end_y = b_start_y + y_min - 2 * dx

    bottom_bound = b_end_y

    # Top square
    t_start_x = 0.0
    t_start_y = h - y_min + 2 * dx
    t_end_x = t_start_x + w
    t_end_y = h

    top_bound = t_start_y

    # left square
    l_start_x = 0.0
    l_start_y = y_min - 2 * dx
    l_end_x = l_start_x + x_min - 2 * dx
    l_end_y = l_start_y + h - 2 * y_min + 4 * dx

    left_bound = l_end_x

    # right square
    r_start_x = w - x_min + 2 * dx
    r_start_y = y_min - 2 * dx
    r_end_x = w - dx
    r_end_y = r_start_y + h - 2 * y_min + 4 * dx

    right_bound = r_start_x

    pos_list_fluid = [start_x, start_y, end_x, end_y]
    placeParticles(pos_list_fluid, particle_list, wall_mark)

    # These are boundaries
    pos_list_bs = [b_start_x, b_start_y, b_end_x, b_end_y]
    placeParticles(pos_list_bs, particle_list, wall_mark, bound=1)

    pos_list_ts = [t_start_x, t_start_y, t_end_x, t_end_y]
    placeParticles(pos_list_ts, particle_list, wall_mark, bound=1)

    pos_list_ls = [l_start_x, l_start_y, l_end_x, l_end_y]
    placeParticles(pos_list_ls, particle_list, wall_mark, bound=1)

    pos_list_rs = [r_start_x, r_start_y, r_end_x, r_end_y]
    placeParticles(pos_list_rs, particle_list, wall_mark, bound=1)

    return particle_list,wall_mark, top_bound, bottom_bound, left_bound, right_bound

def makeGrid():
    grid_size = 2*dh
    num_x = np.ceil(w_bound / grid_size).astype(int)
    num_y = np.ceil(h_bound / grid_size).astype(int)

    grid_x = num_x
    grid_y = num_y
    return grid_x, grid_y

@ti.data_oriented
class sph_solver:
    def __init__(self, particle_list,
                 wall_mark,
                 grid,
                 bound, dx=0.2, max_time=10000, max_steps=1000,gui=None):
        ######## Solver parameters ##########
        self.max_time = max_time
        self.max_steps = max_steps
        self.gui = gui
        # Gravity
        self.g = -9.80
        # viscosity
        self.mu = 1e-3
        # reference density
        self.rho_0 = 1000.0
        # CFL coefficient
        self.CFL = 0.20

        # Smooth kernel norm factor
        self.kernel_norm = 1.0

        # Pressure state function parameters
        self.gamma = 7.0
        self.c_0 = 20.0

        ###### Scene parameters ########
        self.w = 20
        self.h = 10
        self.w_bound = 22
        self.h_bound = 12

        assert self.w_bound > self.w
        assert self.h_bound > self.h
        self.x_min = (self.w_bound - self.w) / 2.0
        self.y_min = (self.h_bound - self.h) / 2.0
        self.x_max = self.w_bound - (self.w_bound - self.w) / 2.0
        self.y_max = self.h_bound - (self.h_bound - self.h) / 2.0

        self.top_bound = bound[0] # top_bound
        self.bottom_bound = bound[1] #bottom_bound
        self.left_bound = bound[2] #left_bound
        self.right_bound = bound[3] #right_bound

        self.df_fac = 1.3
        self.dx = 0.2
        self.dh = self.dx * self.df_fac
        self.kernel_norm = 10. / (7. * np.pi * self.dh ** 2)

        ###### Particles #######
        self.dim = 2
        self.particle_numbers = len(particle_list)

        self.grid_x = grid[0]
        self.grid_y = grid[1]

        # Fluid particles
        self.old_positions = ti.Vector(self.dim, dt=ti.f32)
        self.particle_positions = ti.Vector(self.dim, dt=ti.f32)
        self.particle_velocity = ti.Vector(self.dim, dt=ti.f32)
        self.particle_pressure = ti.Vector(1, dt=ti.f32)
        self.particle_density = ti.Vector(1, dt=ti.f32)
        self.wall_mark_list = ti.Vector(1, dt=ti.f32)

        self.d_velocity = ti.Vector(self.dim, dt=ti.f32)
        self.d_density = ti.Vector(1, dt=ti.f32)

        self.dx = dx
        self.m = self.dx**2 * 1000

        self.particle_list = np.array(particle_list)
        self.wall_mark = np.array(wall_mark)

        self.grid_num_particles = ti.var(ti.i32)
        self.grid2particles = ti.var(ti.i32)
        self.particle_num_neighbors = ti.var(ti.i32)
        self.particle_neighbors = ti.var(ti.i32)

        self.max_num_particles_per_cell = 100
        self.max_num_neighbors = 100

        ti.root.dense(ti.i, self.particle_numbers).place(self.old_positions, self.particle_positions,
                                                         self.particle_velocity, self.particle_pressure,
                                                         self.particle_density, self.d_velocity, self.d_density,
                                                         self.wall_mark_list)

        grid_snode = ti.root.dense(ti.ij, (self.grid_x, self.grid_y))
        grid_snode.place(self.grid_num_particles)
        grid_snode.dense(ti.k, self.max_num_particles_per_cell).place(self.grid2particles)

        nb_node = ti.root.dense(ti.i, self.particle_numbers)
        nb_node.place(self.particle_num_neighbors)
        nb_node.dense(ti.j, self.max_num_neighbors).place(self.particle_neighbors)

    @ti.kernel
    def init(self, p_list:ti.ext_arr(), w_list:ti.ext_arr()):
        for i in range(self.particle_numbers):
            for j in ti.static(range(self.dim)):
                self.particle_positions[i][j] = p_list[i,j]
                self.particle_velocity[i][j] = ti.cast(0.0, ti.f32)
            self.d_velocity[i][0] = ti.cast(0.0, ti.f32)
            self.d_velocity[i][1] = ti.cast(-9.8, ti.f32)

            self.wall_mark_list[i][0] = w_list[i]
            self.d_density[i][0] = ti.cast(0.0, ti.f32)
            self.particle_pressure[i][0] = ti.cast(0.0, ti.f32)
            self.particle_density[i][0] = ti.cast(1000.0, ti.f32)

    @ti.func
    def computeGridIndex(self, pos):
        return (pos / (2 * dh)).cast(int)

    @ti.kernel
    def allocateParticles(self):
        # Ref to pbf2d example from by Ye Kuang (k-ye)
        # https://github.com/taichi-dev/taichi/blob/master/examples/pbf2d.py
        # allocate particles to grid
        for p_i in self.particle_positions:
            # Compute the grid index on the fly
            cell = self.computeGridIndex(self.particle_positions[p_i])
            offs = self.grid_num_particles[cell].atomic_add(1)
            self.grid2particles[cell, offs] = p_i

    @ti.func
    def is_in_grid(self, c):
        # Ref to pbf2d example from by Ye Kuang (k-ye)
        # https://github.com/taichi-dev/taichi/blob/master/examples/pbf2d.py
        return 0 <= c[0] and c[0] < self.grid_x and 0 <= c[1] and c[1] < self.grid_y

    @ti.func
    def isFluid(self, p):
        # check fluid particle or bound particle
        return self.wall_mark_list[p][0]

    @ti.kernel
    def search_neighbors(self):
        # Ref to pbf2d example from by Ye Kuang (k-ye)
        # https://github.com/taichi-dev/taichi/blob/master/examples/pbf2d.py
        for p_i in self.particle_positions:
            pos_i = self.particle_positions[p_i]
            nb_i = 0
            if self.isFluid(p_i) == 1:
                # Compute the grid index on the fly
                cell = self.computeGridIndex(self.particle_positions[p_i])
                for offs in ti.static(ti.grouped(ti.ndrange((-1, 2), (-1, 2)))):
                    cell_to_check = cell + offs
                    if self.is_in_grid(cell_to_check):
                        for j in range(self.grid_num_particles[cell_to_check]):
                            p_j = self.grid2particles[cell_to_check, j]
                            if nb_i < self.max_num_neighbors and p_j != p_i and (
                                    pos_i - self.particle_positions[p_j]).norm() < self.dh * 2.00:
                                self.particle_neighbors[p_i, nb_i] = p_j
                                nb_i += 1
            self.particle_num_neighbors[p_i] = nb_i

    @ti.func
    def cubicKernel(self, r, h):
        # value of cubic spline smoothing kernel
        k = 10. / (7. * np.pi * h ** 2)
        q = r / h
        assert q >= 0.0
        res = ti.cast(0.0, ti.f32)
        if q <= 1.0:
            res = k * (1 - 1.5 * q ** 2 + 0.75 * q ** 3)
        elif q < 2.0:
            res = k * 0.25 * (2 - q) ** 3
        return res

    @ti.func
    def cubicKernelDerivative(self, r, h):
        # derivative of cubcic spline smoothing kernel
        k = 10. / (7. * np.pi * h ** 2)
        q = r / h
        assert q > 0.0
        res = ti.cast(0.0, ti.f32)
        if q < 1.0:
            res =  (k / h) * (-3 * q + 2.25 * q ** 2)
        elif q < 2.0:
            res = -0.75 * (k / h) * (2 - q) ** 2
        return res

    @ti.func
    def rhoDerivative(self, ptc_i, ptc_j, r, r_mod, h):
        # density delta
        return self.m * self.cubicKernelDerivative(r_mod, h) \
               * (self.particle_velocity[ptc_i]- self.particle_velocity[ptc_j]).dot(r / r_mod)

    @ti.func
    def pUpdate(self, rho, rho_0=1000, gamma=7.0, c_0=20.0):
        # Weakly compressible, tait function
        b = rho_0 * c_0 ** 2 / gamma
        return b * ((rho / rho_0) ** gamma - 1.0)

    @ti.func
    def pressureForce(self, ptc_i, ptc_j, r, r_mod, h, mirror_pressure=0):
        # Compute the pressure force contribution, Symmetric Formula
        res = ti.Vector([0.0, 0.0])
        # Disable the mirror force, use collision instead
        # Use pressure mirror method to handle boundary leak
        # if mirror_pressure == 1:
        #     res = - self.m * (self.particle_pressure[ptc_i][0]/ self.particle_density[ptc_i][0] ** 2
        #                       + self.particle_pressure[ptc_i][0]/self.rho_0**2)* self.cubicKernelDerivative(r_mod, h) * r / r_mod
        # else:
        res =  -self.m * (self.particle_pressure[ptc_i][0] / self.particle_density[ptc_i][0] ** 2
                          + self.particle_pressure[ptc_j][0] / self.particle_density[ptc_j][0] ** 2) \
               * self.cubicKernelDerivative(r_mod, h) * r / r_mod
        return res

    @ti.func
    def viscosityForce(self, ptc_i, ptc_j, r, r_mod, h, mu=1e-3):
        # Compute the viscosity force contribution, Symmetric Formula
        res = ti.Vector([0.0, 0.0])
        res =  mu * (1.0 / self.particle_density[ptc_i][0] ** 2 + 1.0 / self.particle_density[ptc_j][0] ** 2) \
               * self.cubicKernelDerivative(r_mod, h) * (self.particle_velocity[ptc_i]- self.particle_velocity[ptc_j]) / r_mod
        return res

    @ti.func
    def simualteCollisions(self, ptc_i, vec, d):
        # Collision factor, assume roughly 50% velocity loss after collision, i.e. m_f /(m_f + m_b)
        c_f = 0.5
        self.particle_positions[ptc_i] += vec * d
        self.particle_velocity[ptc_i] -= (1.0+c_f) * self.particle_velocity[ptc_i].dot(vec) * vec

    @ti.kernel
    def enforceBoundary(self):
        for p_i in self.particle_positions:
            if self.isFluid(p_i) == 1:
                pos = self.particle_positions[p_i]
                if pos[0] < self.left_bound:
                    self.simualteCollisions(p_i, ti.Vector([1.0, 0.0]), self.left_bound - pos[0])
                if pos[0] > self.right_bound:
                    self.simualteCollisions(p_i, ti.Vector([-1.0, 0.0]), pos[0] - self.right_bound)
                if pos[1] > self.top_bound:
                    self.simualteCollisions(p_i, ti.Vector([0.0, -1.0]), pos[1] - self.top_bound)
                if pos[1] < self.bottom_bound:
                    self.simualteCollisions(p_i, ti.Vector([0.0, 1.0]), self.bottom_bound - pos[1])

    @ti.kernel
    def computeDeltas(self):
        for p_i in self.particle_positions:
            pos_i = self.particle_positions[p_i]
            d_v = ti.Vector([0.0, 0.0])
            d_rho = 0.0
            # if self.isFluid(p_i) == 1:
            #     d_v = ti.Vector([0.0, -9.8])
            for j in range(self.particle_num_neighbors[p_i]):
                p_j = self.particle_neighbors[p_i, j]
                pos_j = self.particle_positions[p_j]

                # Disable mirror force
                # mirror_pressure = 0
                # if self.isFluid(p_j) == 0:
                #     mirror_pressure = 1

                # Compute distance and its mod
                r = pos_i - pos_j
                r_mod = r.norm()

                # Compute Density change
                d_rho += self.rhoDerivative(p_i, p_j, r, r_mod, self.dh)

                if self.isFluid(p_i) == 1:
                    # Compute Viscosity force contribution
                    d_v += self.viscosityForce(p_i, p_j, r, r_mod, self.dh, self.mu)

                    # Compute Pressure force contribution
                    d_v += self.pressureForce(p_i, p_j, r, r_mod, self.dh)

            # Add body force
            if self.isFluid(p_i) == 1:
                d_v += ti.Vector([0.0, -9.8])
            self.d_velocity[p_i] = d_v
            self.d_density[p_i][0] = d_rho

    @ti.kernel
    def updateTimeStep(self):
        # Simple Forward Euler currently
        for p_i in self.particle_positions:
            if self.isFluid(p_i) == 1:
                self.particle_positions[p_i] += self.dt * self.particle_velocity[p_i]
                self.particle_velocity[p_i] += self.dt * self.d_velocity[p_i]
            self.particle_density[p_i][0] += self.dt * self.d_density[p_i][0]
            self.particle_pressure[p_i][0] = self.pUpdate(self.particle_density[p_i][0], self.rho_0, self.gamma, self.c_0)

    def solve(self):
        # Compute dt, a naive initial test value
        self.dt = 0.1 * self.dh / self.c_0
        print("Time step: ", self.dt)
        print("Domain: (%s, %s, %s, %s)" % (self.x_min, self.x_max, self.y_min, self.y_max), )
        print("Fluid area: (%s, %s, %s, %s)"%(self.left_bound, self.right_bound, self.bottom_bound, self.top_bound))
        print("Grid: (%d, %d)"%(self.grid_x, self.grid_y))

        step = 1
        t = 0.0
        total_start = time.process_time()
        while t < self.max_time and step < self.max_steps:
            curr_start = time.process_time()
            self.solveUpdate()
            max_v = np.max(np.linalg.norm(self.particle_velocity.to_numpy(),2, axis=1))
            max_a = np.max(np.linalg.norm(self.d_velocity.to_numpy(),2, axis=1))
            max_rho = np.max(self.particle_density.to_numpy())
            max_pressure = np.max(self.particle_pressure.to_numpy())

            curr_end = time.process_time()
            t += self.dt
            step += 1

            # CFL analysis, adaptive dt
            dt_cfl = self.dh / max_v
            dt_f = np.sqrt(self.dh / max_a)
            dt_a = self.dh / (self.c_0 * np.sqrt((max_rho / self.rho_0)**self.gamma))
            self.dt = self.CFL * np.min([dt_cfl, dt_f, dt_a])
            if step % 10 == 0:
                print("Step: %d, physics time: %s, progress: %s %%, time used: %s, total time used: %s"
                      % (step, t, 100*np.max([t / self.max_time, step / self.max_steps]), curr_end-curr_start, curr_end-total_start))
                print("Max velocity: %s, Max acceleration: %s, Max density: %s, Max pressure: %s" % (max_v, max_a, max_rho, max_pressure))
                print("Adaptive time step: ", self.dt)
            self.render(step, self.gui)
        total_end = time.process_time()
        print("Total time used: %s " % (total_end - total_start))

    def solveUpdate(self):
        self.grid_num_particles.fill(0)
        self.particle_neighbors.fill(-1)
        self.allocateParticles()
        self.search_neighbors()
        # Compute deltas
        self.computeDeltas()
        # timestep Update
        self.updateTimeStep()
        # Handle potential leak particles
        self.enforceBoundary()

    def isFluidNP(self, p):
        # ti.func cannot be called in python scope
        # for render use
        return self.wall_mark[p]

    def render(self, step, gui):
        canvas = gui.canvas
        canvas.clear(bg_color)
        pos_np = self.particle_positions.to_numpy()
        fluid_p = []
        wall_p = []
        for i, pos in enumerate(pos_np):
            if self.isFluidNP(i) == 1:
                fluid_p.append(pos)
            else:
                wall_p.append(pos)
        fluid_p = np.array(fluid_p)
        wall_p = np.array(wall_p)

        for pos in fluid_p:
            for j in range(self.dim):
                pos[j] *= screen_to_world_ratio / screen_res[j]

        for pos in wall_p:
            for j in range(self.dim):
                pos[j] *= screen_to_world_ratio / screen_res[j]

        gui.circles(fluid_p, radius=particle_radius, color=particle_color)
        gui.circles(wall_p, radius=particle_radius, color=boundary_color)
        gui.show()

def main():
    gui = ti.GUI('SPH2D', screen_res)
    grid_shape = makeGrid()
    particle_list,wall_mark, u, b, l, r = setup()
    sph = sph_solver(particle_list, wall_mark, grid_shape, [u,b,l,r], dx = dx, gui=gui, max_steps=10000)
    sph.init(sph.particle_list, sph.wall_mark)
    sph.solve()
    print('done')

if __name__ == '__main__':
    main()














6 个赞

可以试着加上xsph粘滞,看着应该能稳定一些

1 个赞

好建议!确实看上去有点抖

一般来说SPH的粒子分布是非常均匀的,比如说这个 https://raw.githubusercontent.com/yuanming-hu/public_files/master/graphics/taichi/pbf.gif (虽然这是PBF,SPH也差不多)

感觉可以检查一下代码里面是不是哪里有一些小问题。一个debug的方法:只用两个粒子,看看他们会不会相互粘连。如果只有pressure项的话,一般是不会粘连的。

1 个赞

sph_hv

感谢指导! 之前viscosity确实有些问题,改进后更有流体那味儿了 :grin:

2 个赞

赞!现在看起来好多了!

1 个赞

@mzhang @yuanming
请教一下,代码里不是像课件里直接计算rho(image )。而是先计算d_rho,

    def rhoDerivative(self, ptc_i, ptc_j, r, r_mod, h):
        # density delta
        return self.m * self.cubicKernelDerivative(r_mod, h) \
               * (self.particle_velocity[ptc_i]- self.particle_velocity[ptc_j]).dot(r / r_mod)

再更新rho。
请问这种改变的原因是什么,有什么参考文献吗?
谢谢。

Check out this:
https://blog.csdn.net/liuyunduo/article/details/84098884

2 个赞

SPH计算密度一般有Explicit Volume Deviation和Differential Volume Deviation两种方法,课件中的是前者,代码里用了后者;两种方法各有利弊,详细的讨论可以参考:
https://interactivecomputergraphics.github.io/SPH-Tutorial/
Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids的第4节

感谢

感谢 感恩

各位大佬,我借鉴题主的代码试着写了下WCSPH,尽管我在调试期间找到很多错误, 但是我的模拟当前跑起来还是非常的奇怪,能不能烦请各位看一看我的这个step() 函数是不是有什么理解上的错误。代码很短(20行),我用的是最暴力的算法,没做任何优化,其中的4个for循环分别对应下面的一组公式:

1).get density Screenshot from 2020-08-02 21-52-11
2).get pressure from densityScreenshot from 2020-08-02 21-53-50
3). get change in pressureScreenshot from 2020-08-02 21-54-02
4). propagate dynamicsScreenshot from 2020-08-02 21-54-19
Screenshot from 2020-08-02 21-54-28

    @ti.kernel
    def step(self):
        #1).get density
        for p_i in self.positions:
            self.density[p_i][0] = 0
            for p_j in range(self.num_particles):
                if p_i == p_j: continue
                r = self.positions[p_i] - self.positions[p_j]
                r_ij = r.norm()
                self.density[p_i][0] += self.mass * self.cubic_kernel(r_ij, self.h)

        #2).get pressure from density
        for p_i in self.positions:
            self.pressure[p_i][0] = self.pressure_equation_of_state(p_i)

        #3). get change in pressure
        for p_i in self.positions:
            self.d_pressure[p_i] = [0, 0]
            for p_j in range(self.num_particles):
                if p_i == p_j: continue
                r = self.positions[p_i] - self.positions[p_j]
                r_ij = r.norm()
                self.d_pressure[p_i] += self.mass * (self.pressure[p_i][0] / self.density[p_i][0]**2 + self.pressure[p_j][0] / self.density[p_j][0] ** 2) * self.cubic_kernel_derivative(r_ij, self.h) * r/r_ij
            self.d_pressure[p_i] *= self.density[p_i][0]
        
        #4). propagate dynamics
        for p_i in self.positions:
            self.velocities[p_i] += self.dt * ( self.d_pressure[p_i] * (-1/self.density[p_i][0]) + self.g)
            self.positions[p_i] += self.dt * self.velocities[p_i]

在此先提前谢谢各位的帮助。

完整版的代码如下,运行就可以看到当前的模拟效果。

import numpy as np
import matplotlib.pyplot as plt
import time
from itertools import count, product
import taichi as ti

ti.init(arch=ti.cpu)

RIGHT = TOP = 0.95
LEFT = BOTTOM = 0.05
# PARTICAL_SIZE = 0.01
PARTICAL_SIZE = 0.1
DIM = 1000
#particle_start_positions = np.array(list(product(np.arange(LEFT + PARTICAL_SIZE, RIGHT, PARTICAL_SIZE), np.arange(0.5, 0.7, PARTICAL_SIZE))))
particle_start_positions = np.array([[0.2,0.3], [0.3,0.3]])
# particle_start_positions = np.array([[0.7,0.7]])

num_particles = len(particle_start_positions)

@ti.data_oriented
class WCSPH():
    def __init__(self, particle_start_positions, dim = 2, 
    top = TOP, bottom = BOTTOM, left = LEFT, right = RIGHT):
        self.dim = dim
        self.num_particles = len(particle_start_positions)
        self.particle_start_positions =  particle_start_positions

        self.positions = ti.Vector(self.dim, dt = ti.f32) 
        self.velocities = ti.Vector(self.dim, dt = ti.f32)
        self.density = ti.Vector(1, dt = ti.f32)
        self.pressure = ti.Vector(1, dt = ti.f32)
        self.d_pressure = ti.Vector(self.dim, dt = ti.f32)

        # this allows to give many vector/matrix the right shape at one go, rather than specifying shape per vector/matrix
        ti.root.dense(ti.i, self.num_particles).place(self.positions, self.velocities, self.density, self.pressure, self.d_pressure)

        self.positions.from_numpy(self.particle_start_positions)
        self.dt = 1e-3
        self.mass = 1.0
        self.h = 1
        self.g = ti.Vector([0, -9.0])
        self.left_bound = left
        self.right_bound = right 
        self.top_bound = top
        self.bottom_bound = bottom

    # @ti.kernel
    # def initialise(self):
    #     for i in range(self.num_particles):
    #         self.positions[i] = self.particle_start_positions[i]

    @ti.func
    def pressure_equation_of_state(self, p_i, rho_0=1, gamma=7.0, c_0=20.0):
        # Weakly compressible, tait function
        b = rho_0 * c_0 ** 2 / gamma
        return b * ((self.density[p_i][0] / rho_0) ** gamma - 1.0)

    @ti.kernel
    def step(self):
        for p_i in self.positions:
            self.density[p_i][0] = 0
            for p_j in range(self.num_particles):
                if p_i == p_j: continue
                r = self.positions[p_i] - self.positions[p_j]
                r_ij = r.norm()
                self.density[p_i][0] += self.mass * self.cubic_kernel(r_ij, self.h)
        
        for p_i in self.positions:
            self.pressure[p_i][0] = self.pressure_equation_of_state(p_i)
        
        for p_i in self.positions:
            self.d_pressure[p_i] = [0, 0]
            for p_j in range(self.num_particles):
                if p_i == p_j: continue
                r = self.positions[p_i] - self.positions[p_j]
                r_ij = r.norm()
                self.d_pressure[p_i] += self.mass * (self.pressure[p_i][0] / self.density[p_i][0]**2 + self.pressure[p_j][0] / self.density[p_j][0] ** 2) * self.cubic_kernel_derivative(r_ij, self.h) * r/r_ij
            self.d_pressure[p_i] *= self.density[p_i][0]
        
        for p_i in self.positions:
            self.velocities[p_i] += self.dt * ( self.d_pressure[p_i] * (-1/self.density[p_i][0]) + self.g)
            # self.velocities[p_i] += self.g
            self.positions[p_i] += self.dt * self.velocities[p_i]
        
    @ti.func
    def simualteCollisions(self, p_i, vec, d):
        # Collision factor, assume roughly 50% velocity loss after collision, i.e. m_f /(m_f + m_b)
        c_f = 0.5
        self.positions[p_i] += vec * d
        self.velocities[p_i] -= (1.0+c_f) * self.velocities[p_i].dot(vec) * vec

    @ti.kernel
    def enforce_boundary(self):
        for p_i in self.positions:
            pos = self.positions[p_i]
            if pos[0] < self.left_bound:
                self.simualteCollisions(p_i, ti.Vector([1.0, 0.0]), self.left_bound - pos[0])
            if pos[0] > self.right_bound:
                self.simualteCollisions(p_i, ti.Vector([-1.0, 0.0]), pos[0] - self.right_bound)
            if pos[1] > self.top_bound:
                self.simualteCollisions(p_i, ti.Vector([0.0, -1.0]), pos[1] - self.top_bound)
            if pos[1] < self.bottom_bound:
                self.simualteCollisions(p_i, ti.Vector([0.0, 1.0]), self.bottom_bound - pos[1])


    @ti.func
    def update_density(self, i, j, r_ij):
        self.density[i][0] += self.mass * self.cubic_kernel(r_ij, self.h) 


    @ti.func
    def cubic_kernel(self, r, h):
        # value of cubic spline smoothing kernel
        k = 10. / (7. * np.pi * h ** 2)
        q = r / h
        assert q >= 0.0
        res = ti.cast(0.0, ti.f32)
        if q <= 1.0:
            res = k * (1 - 1.5 * q ** 2 + 0.75 * q ** 3)
        elif q < 2.0:
            res = k * 0.25 * (2 - q) ** 3
        return res

    @ti.func
    def cubic_kernel_derivative(self, r, h):
        # derivative of cubcic spline smoothing kernel
        k = 10. / (7. * np.pi * h ** 2)
        q = r / h
        assert q > 0.0
        res = ti.cast(0.0, ti.f32)
        if q < 1.0:
            res =  (k / h) * (-3 * q + 2.25 * q ** 2)
        elif q < 2.0:
            res = -0.75 * (k / h) * (2 - q) ** 2
        return res
    

def main():
    gui = ti.GUI("WCSPH", (DIM, DIM))
    
    tmp = WCSPH(particle_start_positions)
    # tmp.initialise()

    while True:
        #box
        print("positions: ", tmp.positions)
        print("velocities: ", tmp.velocities)
        print("pressure: ", tmp.pressure)
        print("d_pressure: ", tmp.d_pressure)
        print("density: ", tmp.density)
        print()
        tmp.step()
        tmp.enforce_boundary()
        gui.line(begin=(LEFT, BOTTOM), end=(RIGHT, BOTTOM), color=0xFFFFFF, radius=1)
        gui.line(begin=(LEFT, TOP), end=(RIGHT, TOP), color=0xFFFFFF, radius=1)
        gui.line(begin=(LEFT, TOP), end=(LEFT, BOTTOM), color=0xFFFFFF, radius=1)
        gui.line(begin=(RIGHT, TOP), end=(RIGHT, BOTTOM), color=0xFFFFFF, radius=1)

        gui.circles(tmp.positions.to_numpy(), color = 0xFFFFFF, radius = PARTICAL_SIZE * DIM / 2)

        gui.show()



if __name__ == '__main__':
    main()


1 个赞