Homework0 计算流体力学视角的流体求解器

板上已经有其他同学写过了格式各样炫酷的流体求解器,作为专业研究流体力学的 :joy:,写了一个计算流体力学视角的求解器。相比图形学中的流体仿真,工业上的流体仿真对准确性的要求更高一些,因而很难做到real-time simulation。这里的求解器采用了Lattice Boltzmann方法,在taichi的cuda backend下居然能跑到54FPS (GTX 960)。

程序提供了两个科普算例,一个是卡门涡街(卡门指的是钱学森的导师von Karman)。卡门涡街是流体流过钝体时产生周期性的尾涡脱落的有趣现象,模拟结果如下:
video

代码如下:

import taichi as ti
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt

ti.init(arch=ti.gpu)

@ti.data_oriented
class lbm_solver:
    def __init__(self,
                 nx, # domain size
                 ny,
                 niu, # viscosity of fluid
                 bc_type, # [left,top,right,bottom] boundary conditions: 0 -> Dirichlet ; 1 -> Neumann
                 bc_value, # if bc_type = 0, we need to specify the velocity in bc_value
                 cy = 0, # whether to place a cylindrical obstacle
                 cy_para = [0.0, 0.0, 0.0], # location and radius of the cylinder
                 steps = 60000): # total steps to run
        self.nx = nx  # by convention, dx = dy = dt = 1.0 (lattice units)
        self.ny = ny
        self.niu = niu
        self.tau = 3.0 * niu + 0.5
        self.inv_tau = 1.0 / self.tau
        self.rho = ti.var(dt=ti.f32, shape=(nx, ny))
        self.vel = ti.Vector(2, dt=ti.f32, shape=(nx, ny))
        self.mask = ti.var(dt=ti.f32, shape=(nx, ny))
        self.display_var = ti.var(dt=ti.f32, shape=(nx, ny))
        self.f_old = ti.Vector(9, dt=ti.f32, shape=(nx, ny))
        self.f_new = ti.Vector(9, dt=ti.f32, shape=(nx, ny))
        self.w = ti.var(dt=ti.f32, shape=9)
        self.e = ti.var(dt=ti.i32, shape=(9, 2))
        self.bc_type = ti.var(dt=ti.i32, shape=4)
        self.bc_value = ti.var(dt=ti.f32, shape=(4, 2))
        self.cy = cy
        self.cy_para = ti.var(dt=ti.f32, shape=3)
        self.bc_type.from_numpy(np.array(bc_type, dtype=np.int32))
        self.bc_value.from_numpy(np.array(bc_value, dtype=np.float32))
        self.cy_para.from_numpy(np.array(cy_para, dtype=np.float32))
        self.steps = steps
        arr = np.array([ 4.0 / 9.0, 1.0 / 9.0, 1.0 / 9.0, 1.0 / 9.0, 1.0 / 9.0, 1.0 / 36.0,
            1.0 / 36.0, 1.0 / 36.0, 1.0 / 36.0], dtype=np.float32)
        self.w.from_numpy(arr)
        arr = np.array([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], [1, 1],
                        [-1, 1], [-1, -1], [1, -1]], dtype=np.int32)
        self.e.from_numpy(arr)

    @ti.func # compute equilibrium distribution function
    def f_eq(self, i, j, k):
        eu = ti.cast(self.e[k, 0], ti.f32) * self.vel[i, j][0] + ti.cast(self.e[k, 1], 
            ti.f32) * self.vel[i, j][1]
        uv = self.vel[i, j][0]**2.0 + self.vel[i, j][1]**2.0
        return self.w[k] * self.rho[i, j] * (1.0 + 3.0 * eu + 4.5 * eu**2 - 1.5 * uv)

    @ti.kernel
    def init(self):
        for i, j in self.rho:
            self.vel[i, j][0] = 0.0
            self.vel[i, j][1] = 0.0
            self.rho[i, j] = 1.0
            self.mask[i, j] = 0.0
            for k in ti.static(range(9)):
                self.f_new[i, j][k] = self.f_eq(i, j, k)
                self.f_old[i, j][k] = self.f_new[i, j][k]
            if(self.cy==1):
                if ((ti.cast(i, ti.f32) - self.cy_para[0])**2.0 + (ti.cast(j, ti.f32)
                    - self.cy_para[1])**2.0 <= self.cy_para[2]**2.0):
                    self.mask[i, j] = 1.0


    @ti.kernel
    def collide_and_stream(self): # lbm core equation
        for i, j in ti.ndrange((1, self.nx - 1), (1, self.ny - 1)):
            for k in ti.static(range(9)):
                ip = i - self.e[k, 0]
                jp = j - self.e[k, 1]
                self.f_new[i,j][k] = (1.0-self.inv_tau)*self.f_old[ip,jp][k] + \
                                        self.f_eq(ip,jp,k)*self.inv_tau

    @ti.kernel
    def update_macro_var(self): # compute rho u v
        for i, j in ti.ndrange((1, self.nx - 1), (1, self.ny - 1)):
            self.rho[i, j] = 0.0
            self.vel[i, j][0] = 0.0
            self.vel[i, j][1] = 0.0
            for k in ti.static(range(9)):
                self.f_old[i, j][k] = self.f_new[i, j][k]
                self.rho[i, j] += self.f_new[i, j][k]
                self.vel[i, j][0] += (ti.cast(self.e[k, 0], ti.f32) *
                                      self.f_new[i, j][k])
                self.vel[i, j][1] += (ti.cast(self.e[k, 1], ti.f32) *
                                      self.f_new[i, j][k])
            self.vel[i, j][0] /= self.rho[i, j]
            self.vel[i, j][1] /= self.rho[i, j]

    @ti.kernel
    def apply_bc(self): # impose boundary conditions
        # left and right
        for j in ti.ndrange(1, self.ny - 1):
            # left: dr = 0; ibc = 0; jbc = j; inb = 1; jnb = j
            self.apply_bc_core(1, 0, 0, j, 1, j)

            # right: dr = 2; ibc = nx-1; jbc = j; inb = nx-2; jnb = j
            self.apply_bc_core(1, 2, self.nx - 1, j, self.nx - 2, j)

        # top and bottom
        for i in ti.ndrange(self.nx):
            # top: dr = 1; ibc = i; jbc = ny-1; inb = i; jnb = ny-2
            self.apply_bc_core(1, 1, i, self.ny - 1, i, self.ny - 2)

            # bottom: dr = 3; ibc = i; jbc = 0; inb = i; jnb = 1
            self.apply_bc_core(1, 3, i, 0, i, 1)

        # cylindrical obstacle
        # Note: for cuda backend, putting 'if statement' inside loops can be much faster!
        for i, j in ti.ndrange(self.nx, self.ny): 
            if (self.cy == 1 and self.mask[i, j] == 1):
                self.vel[i, j][0] = 0.0  # velocity is zero at solid boundary  
                self.vel[i, j][1] = 0.0
                inb = 0
                jnb = 0
                if (ti.cast(i,ti.f32) >= self.cy_para[0]):
                    inb = i + 1
                else:
                    inb = i - 1
                if (ti.cast(j,ti.f32) >= self.cy_para[1]):
                    jnb = j + 1
                else:
                    jnb = j - 1
                self.apply_bc_core(0, 0, i, j, inb, jnb)

    @ti.func
    def apply_bc_core(self, outer, dr, ibc, jbc, inb, jnb):
        if (outer == 1):  # handle outer boundary
            if (self.bc_type[dr] == 0):
                self.vel[ibc, jbc][0] = self.bc_value[dr, 0]
                self.vel[ibc, jbc][1] = self.bc_value[dr, 1]
            elif (self.bc_type[dr] == 1):
                self.vel[ibc, jbc][0] = self.vel[inb, jnb][0]
                self.vel[ibc, jbc][1] = self.vel[inb, jnb][1]
        self.rho[ibc, jbc] = self.rho[inb, jnb]
        for k in ti.static(range(9)):
            self.f_old[ibc,jbc][k] = self.f_eq(ibc,jbc,k) - self.f_eq(inb,jnb,k) + \
                                        self.f_old[inb,jnb][k]

    @ti.kernel
    def get_display_var(self, flg: ti.i32):
        if (flg == 0): # get velocity magnitude
            for i, j in ti.ndrange(self.nx, self.ny):
                self.display_var[i, j] = ti.sqrt(self.vel[i, j][0]**2.0 +
                                                 self.vel[i, j][1]**2.0)
        elif (flg == 1): # get x-direction component only
            for i, j in ti.ndrange(self.nx, self.ny):
                self.display_var[i, j] = self.vel[i, j][0]

    def solve(self):
        gui = ti.GUI('lbm solver', (self.nx, self.ny))
        self.init()
        for i in range(self.steps):
            self.collide_and_stream()
            self.update_macro_var()
            self.apply_bc()
            self.get_display_var(0)
            img = cm.plasma(self.display_var.to_numpy() / 0.15)
            gui.set_image(img)
            gui.show()
            if (i % 1000 == 0):
                print('Step: {:}'.format(i))
                # ti.imwrite((img[:,:,0:3]*255).astype(np.uint8), 'fig/karman_'+str(i).zfill(6)+'.png')

    def pass_to_py(self):
        self.get_display_var(1)
        return self.display_var.to_numpy()


if __name__ == '__main__':
    flow_case = 0
    if (flow_case == 0):  # von Karman vortex street: Re = U*D/niu = 200
        lbm = lbm_solver(401, 101, 0.005, [0, 0, 1, 0],
             [[0.1, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]],
             1,[80.0, 50.0, 10.0])
        lbm.solve()
    elif (flow_case == 1):  # lid-driven cavity flow: Re = U*L/niu = 1000
        lbm = lbm_solver(256, 256, 0.0255, [0, 0, 0, 0],
                         [[0.0, 0.0], [0.1, 0.0], [0.0, 0.0], [0.0, 0.0]])
        lbm.solve()

        # compare with literature results
        y_ref, u_ref = np.loadtxt('data/ghia1982.dat', unpack=True, skiprows=2, usecols=(0, 2))
        fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(4, 3), dpi=200)
        axes.plot(np.linspace(0, 1.0, 256), lbm.pass_to_py()[256 // 2, :] / 0.1, 'b-', label='LBM')
        axes.plot(y_ref, u_ref, 'rs', label='Ghia et al. 1982')
        axes.legend()
        axes.set_xlabel(r'Y')
        axes.set_ylabel(r'U')
        plt.tight_layout()
        plt.show()

新人只能发一张图 :joy:,详细一点的介绍见LBM_Taichi

16 个赞

dalao好帅~~仓库里还有详细的图解 爱了 :stuck_out_tongue:

2 个赞

真的太强了……有没有可能用vorticity上个色,看起来效果应该会更好一点:

Von Karman Vortex Street - YouTube

2 个赞

啊是 LBM,让我想起了我教我同学学 fortran,然后写 LBM 的顶盖驱动算例。
有意思的地方在于我不是搞 CFD 的。
和 fortran 一比 taichi 写的程序就充满了生产力。

两种条件直接写两个核函数吧,在 python 函数里做判断。
你这里加个 if 就没法自动并行化了。

ref: PPT, lec1-taichi.pdf, p19, Range-for loops


@yuanming

看代码 flg 的值已经给定了,理论上编译期就能计算、并消除一个分支。这样还能自动并行么?

看文档里用 ti.static 就可以。

Use ti.static for compile-time branching

1 个赞

可以自动并行的,但是flg要用ti.template():

    @ti.kernel
    def get_display_var(self, flg: ti.template()):
        if ti.static(flg == 0): # get velocity magnitude
            for i, j in ti.ndrange(self.nx, self.ny):
                self.display_var[i, j] = ti.sqrt(self.vel[i, j][0]**2.0 +
                                                 self.vel[i, j][1]**2.0)
        else: # get x-direction component only
            for i, j in ti.ndrange(self.nx, self.ny):
                self.display_var[i, j] = self.vel[i, j][0]
4 个赞

hhh, 网上找的啦 :upside_down_face:

这个视频也太炫酷了吧 :grin: ,果然大佬是没有知识盲区的。现在程序里的曲面边界算法太糙了,还容易被各种反射波干扰,画出的vorticity没有这么干净漂亮,后续再找个好点的算法算算看 :joy:

1 个赞

哈哈,巧了巧了,不过我不是专门搞LBM的,只是发现这个算法原理很amazing,和NS方程长得差十万八千里居然也能算流体。

Fortran我现在还在用 :joy:,没办法祖传代码都不愿意改它。写taichi几乎真的是和python无缝链接,体验不要太爽,不过要写得效率高还是要多练习练习。

1 个赞

学到了 :grimacing:

边界看上去确实是有点问题。

vorticity

solve()
import matplotlib

    def solve(self):
        gui = ti.GUI('lbm solver', (self.nx, self.ny*2))
        self.init()
        for i in range(self.steps):
            self.collide_and_stream()
            self.update_macro_var()
            self.apply_bc()
            self.get_display_var()

            ## vor
            vel = self.vel.to_numpy()
            ugrad = np.gradient(vel[:, :, 0])
            vgrad = np.gradient(vel[:, :, 1])
            du_dy = ugrad[1]
            dv_dx = vgrad[0]
            ## vor = dv/dx - du/dy
            vor = dv_dx - du_dy
            ## 颜色映射
            colors = [
                (1, 1, 0), 
                (0.953, 0.490, 0.016), 
                (0, 0, 0),
                (0.176, 0.976, 0.529), 
                (0, 1, 1)
            ]
            my_cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
                'my_cmap', colors)
            vor_img = cm.ScalarMappable(cmap=my_cmap).to_rgba(vor)
            vel_img = cm.plasma(self.display_var.to_numpy() / 0.15)
    
            # numpy 的 y 方向貌似和 taichi 相反
            img = np.concatenate((vor_img, vel_img), axis=1)
            gui.set_image(img)
            
            # gui.show()
            gui.show(f'frame/{i:04d}.png')

            if (i % 1000 == 0):
                print('Step: {:}'.format(i))
4 个赞

牛皮牛皮,这个涡量着色我怎么调colormap都没搞出这个效果。目前圆柱的边界是用阶梯锯齿来替代的,特别糙。上下边界用的无滑移壁面条件,所以也剪切产生了涡,这个可以调整。

1 个赞

我把 matplotlib 的 colormap 反复的看了几遍,中间是黑色的就没几个,一般还都是整体是暗色的。
没办法只能自己调了。

这一顿操作,然后我这边帧率就只有十几帧了,只画一个图时 30fps+ 稳稳地。


@yuanming
taichi 如果能收集一些常用的 @ti.func 就好了。社区驱动就行。
定好标准,大家提交。

像 Shader 的辅助函数:mix、clamp、smoothstep、fract、…

2 个赞

@woclass 好主意!我们内部其实讨论过要不要把glsl之类的shader语言的常用函数加进taichi。后来主要是担心API变得特别庞杂难以维护, 所以就暂时只加入了最核心的函数,毕竟API易增难减。

我觉得可以开一个taichi_shaders Python包来定义这些shader常用函数。这样用户可以直接

import taichi_shaders as ts

@ti.kernel
def shade():
   ts.mix(...)

@archibate

7 个赞

I’d love this, will we add it in taichi.glsl or taichi_glsl (in another package)?

2 个赞

@yuanming Added https://github.com/taichi-dev/taichi_glsl, would you mind share me some skills about making an PyPI package? Btw, we should try to release v0.6.8 today/tonight to match next GAMES 201 lecture.

3 个赞
1 个赞

@yuanming @woclass taichi_glsl uploaded, run pip install -i https://test.pypi.org/simple/ taichi_glsl and enjoy youself with GLSL-alike functions!

from taichi_glsl import *

image = vec_array(3, float, 512, 512)

@ti.kernel
def paint():
  for i, j in image:
    # TODO: add `for coor in view(image):` instead
    coor = view(image, i, j)
    image[i, j] = smoothstep(distance(coor, vec(0.5, 0.5)), 0.5, 0.44) * vec(coor.x, coor.y, 0.0)

paint()
ti.imshow(image)
4 个赞

边界的ringing用MRT(multi-relaxation time)可以改善一些,以前写过一个http://www.cfluid.com/forum.php?mod=viewthread&tid=126105

1 个赞

哇,LBM大佬现身,谢谢指导!请教一下,你说的ringing是指入口那些波动么,我试过把计算区域设大,然后边界都设置成出流边界,可以消除这一现象。另外,MRT比单松弛因子的消耗大概多多少?

入口的波动是因为初始分布没有到平衡态,可以用和边界条件匹配的宏观量先算一个近似的平衡分布。ringing是指边界附近因为数值原因造成的固定的高频信号。MRT主要是碰撞的时候多了两次矩阵乘法,是(部分)构造出来的整形正交矩阵,很多1和0,全部inline还是挺快的,直接用CUDA写应该是比taichi快一些。。。

也有可能是nu太小了,加湍流模型可以稳定住。

圆柱左边的就是ringing,换成halfway bounce back就明显了。出入流边界不清楚有没有问题,但是Re应该是2000吧,同Re减小入流速度似乎要稳定一些。
image

4 个赞